Tin Công Nghệ
Deep Learning Là Gì? Tìm hiểu về các ứng dụng thực tế của Deep Learning
Mục Lục
Deep Learning Là Gì?
Mô hình học sâu hoạt động như thế nào?
Các thuật toán học sâu là các mạng nơ-ron được lập mô hình theo bộ não con người. Ví dụ: một bộ não con người chứa hàng triệu nơ-ron được kết nối với nhau, làm việc cùng nhau để tìm hiểu và xử lý thông tin. Tương tự, các mạng nơ-ron học sâu, hay mạng nơ-ron nhân tạo, được tạo thành từ nhiều lớp nơ-ron nhân tạo hoạt động cùng nhau bên trong máy tính.
Các nơ-ron nhân tạo là những mô-đun phần mềm được gọi là nút, sử dụng các phép toán để xử lý dữ liệu. Các mạng nơ-ron nhân tạo là những thuật toán học sâu sử dụng các nút này để giải quyết các vấn đề phức tạp.
Ứng dụng của Deep Learning trong thực tế
Mô hình học sâu có một số trường hợp sử dụng trong lĩnh vực ô tô, hàng không vũ trụ, sản xuất, điện tử, nghiên cứu y học và nhiều lĩnh vực khác. Sau đây là một vài ví dụ về học sâu:
- Xe tự lái sử dụng các mô hình học sâu để tự động phát hiện biển báo giao thông và người đi bộ.
- Hệ thống quốc phòng sử dụng mô hình học sâu để tự động gắn cờ các khu vực được quan tâm trong ảnh vệ tinh.
- Phân tích hình ảnh y khoa sử dụng học sâu để tự động phát hiện các tế bào ung thư trong chẩn đoán y tế.
- Các nhà máy sử dụng ứng dụng học sâu để tự động phát hiện con người hoặc vật thể khi những đối tượng này đang nằm trong khoảng cách không an toàn của máy móc.
Khi nào nên sử dụng Deep learning?
Mặc dù có hiệu năng và mức độ chính xác vượt trội nhờ nhờ nguồn dữ liệu lớn, mô hình phức tạp. Tuy nhiên, deep learning không phải lúc nào cũng là sự lựa chọn duy nhất cho các bài toán trong lĩnh vực trí tuệ nhân tạo và học máy. Vậy nên, việc nên sử dụng deep learning lúc nào phụ thuộc vào các yếu tố sau đây:
- Mục tiêu và độ phức tạp của dự án: Lợi thế của deep learning là giải quyết các vấn đề phức tạp bằng cách đưa ra các phân tích trong mối quan hệ ẩn trong dữ liệu. Đặc biệt mô hình này phù hợp khi áp dụng vào việc xử lý dữ liệu ở nhiều dạng khác như ngôn ngữ, hình ảnh, nhận diện giọng nói, v.v.
- Tài nguyên: Một khối lượng lớn dữ liệu của doanh nghiệp cần được xử lý thông qua mô hình deep learning sẽ dễ dàng hơn. Tuy nhiên, quá trình xử lý vô cùng phức tạp và tốn kém do đó tùy vào khối lượng dữ liệu mà doanh nghiệp sẽ đưa ra quyết định nên lựa chọn mô hình deep learning hay machine learning.
- Số lượng lớn dữ liệu: Mô hình deep learning chỉ ra các mối quan hệ ẩn sâu bên trong bộ dữ liệu. Tuy nhiên, điều này cũng đồng nghĩa với việc dữ liệu đầu vào phải lớn hơn nhiều so với thuật toán của machine learning. Do đó, đối với lượng dữ liệu lớn việc sử dụng deep learning rất phù hợp.
Kết luận
Deep learning đã cho phép ứng dụng nhiều vấn đề thực tế của máy đồng thời mở rộng lĩnh vực tổng thể của trí tuệ nhân tạo. Deep learning phá vỡ các cách thức con người làm việc bằng cách làm cho tất cả các loại máy móc trợ giúp có thể thực hiện được, gần hoặc giống hệt con người. Ô tô không người lái, chăm sóc sức khỏe con người tốt hơn… Tất cả đều được hiện thực hóa trong thời đại ngày nay. AI là hiện tại và tương lai của thế giới. Với sự trợ giúp của Deep Learning, AI có thể hiện thực hóa ước mơ khoa học giả tưởng mà chúng ta đã tưởng tượng từ rất lâu.
>>> Machine Learning là gì? Và ứng dụng của chúng trong thực tế ra sao mời bạn xem thêm nội dung bài tin tức: “Công nghệ máy học (Machine Learning) là gì?”